On the Parameterized Complexity of Maximum Degree Contraction Problem
نویسندگان
چکیده
In the Maximum Degree Contraction problem, input is a graph G on n vertices, and integers k, d, objective to check whether can be transformed into of maximum degree at most using k edge contractions. A simple brute-force algorithm that checks all possible sets edges for solution runs in time $$n^{\mathcal {O}(k)}$$ . As our first result, we prove this asymptotically optimal, upto constants exponents, under Exponential Time Hypothesis (ETH). Belmonte, Golovach, van’t Hof, Paulusma studied problem realm parameterized complexity proved, among other things, it admits an FPT running $$(d + k)^{2k} \cdot n^{\mathcal {O}(1)} = 2^{\mathcal {O}(k \log (k+d) )} {O}(1)}$$ , remains NP-hard every constant $$d \ge 2$$ (Acta Informatica (2014)). We present different $$2^{\mathcal {O}(dk)} particular, {O}(k)} fixed d. same article, authors asked polynomial kernel, when by $$k d$$ answer question negative does not admit compression unless $$\textsf {NP}\subseteq \textsf {coNP}/poly$$
منابع مشابه
On the Parameterized Complexity of the Maximum Edge Coloring Problem
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q ≥ 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q ≥ 2, and has been well-studied from t...
متن کاملParameterized Complexity of Two Edge Contraction Problems with Degree Constraints
Motivated by recent results of Mathieson and Szeider (J. Comput. Syst. Sci. 78(1): 179–191, 2012), we study two graph modification problems where the goal is to obtain a graph whose vertices satisfy certain degree constraints. The Regular Contraction problem takes as input a graph G and two integers d and k, and the task is to decide whether G can be modified into a d-regular graph using at mos...
متن کاملParameterized Complexity of the Smallest Degree-Constrained Subgraph Problem
In this paper we study the problem of finding an induced subgraph of size at most k with minimum degree at least d for a given graph G, from the parameterized complexity perspective. We call this problem Minimum Subgraph of Minimum Degree ≥d (MSMDd). For d = 2 it corresponds to finding a shortest cycle of the graph. Our main motivation to study this problem is its strong relation to Dense k-Sub...
متن کاملthe effect of task complexity on lexical complexity and grammatical accuracy of efl learners’ argumentative writing
بر اساس فرضیه شناخت رابینسون (2001 و 2003 و 2005) و مدل ظرفیت توجه محدود اسکهان (1998)، این تحقیق تاثیر پیچیدگی تکلیف را بر پیچیدگی واژگان و صحت گرامری نوشتار مباحثه ای 60 نفر از دانشجویان زبان انگلیسی بررسی کرد. میزان پیچیدگی تکلیف از طریق فاکتورهای پراکندگی-منابع تعیین شد. همه ی شرکت کنندگان به صورت نیمه تصادفی به یکی از سه گروه: (1) گروه موضوع، (2) گروه موضوع + اندیشه و (3) گروه موضوع + اندی...
15 صفحه اولOn the Parameterized Complexity of Contraction to Generalization of Trees
For a family of graphs F , the F-Contraction problem takes as an input a graph G and an integer k, and the goal is to decide if there exists S ⊆ E(G) of size at most k such that G/S belongs to F . Here, G/S is the graph obtained from G by contracting all the edges in S. Heggernes et al. [Algorithmica (2014)] were the first to study edge contraction problems in the realm of Parameterized Complex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithmica
سال: 2022
ISSN: ['1432-0541', '0178-4617']
DOI: https://doi.org/10.1007/s00453-021-00897-6